
Register Allocation 



We want to store live variables in registers. 
 
Why?   

• Accessing a value from a register takes 1 
instruction cycle 

• Accessing a value from cache takes 3 to 5 
cycles 

• Accessing a value from RAM takes 20 to 100 
cycles. 

 
The OS determines what is in cache and what is in 
RAM; the compiler determines what is in a register. 



Here is the idea of register allocation: suppose the 
runtime environment has R available registers and a 
particular function uses D <= R variables, including 
parameters, local variables and temporaries.  We 
can speed up the program by  

a) assigning each variable to a register 
b) at the start of the function load each variable 

into its register 
c) throughout the function use only the registers 
d) at the end of the function "spill" all of the 

registers back to the memory locations 
associated with their variables. 



This is sweet, only there are problems: 
• All bets are off if the body of the function calls 

another function (which might trash the 
registers).   

• If a variable is only referenced once, this 
wastes time writing it into a register and then 
writing it back to memory. 

• There are usually more variables than registers. 



• We can't help the problem with calling other 
functions.  Dataflow analysis is only applied to 
the portions of code between calls. Some 
heuristics are applied to determine whether any 
such optimization is worthwhile. 

• To avoid the problems with variables that are 
used only once or twice, it is pretty easy to walk 
down a flowgraph and count the number of 
references.  Note that anything used in a loop 
can be assumed to be referenced many times. 

• Register allocation algorithms assume these 
problems have been handled and we have a flow 
graph where we know the live variables at every 
point on the graph. 



The Register Allocation Problem is determining how 
to assign variables to the available registers. 
 
The most common approach to register allocation 
uses a Graph Coloring algorithm due to G.J. Chaitin 
(1981, plus lots of follow-up papers)  Chaitin was a 
researcher at IBM's TJ Watson research center. 



For starters, notice that two variables can use the 
same register if they are never live at the same time. 
For example x might be live in statements s1-s7, 
then y might be live in s10 -s15, then x might be live 
again in s20-s28.  Suppose they cohabit register R.  If 
x comes alive by being assigned the value of 23 in 
statement s1, we just write that value into R.  After 
statement s7 we write R back to x's location in 
memory.  Similarly, y would come alive in s10 
through assignment, which we would make into R  



The graph coloring idea is to draw a graph where 
the nodes are the variables and edges link every 
pair of variables that are live at the same time.  This 
is called the Interference Graph. We color the 
variables according to the register assignments.  In 
other words, if we can color the variables with {red, 
green, blue} then we put all of the red variables into 
one register, all of the green ones into another, and 
so forth. 
 



Of course, graph coloring is NP-Hard and we need 
to do this quickly, but that is what makes life 
interesting. 
 



Example: 
int f(x) { 
 int a, b, c, d, e; 
 d = 5; 
 b = 7; 
 a = x+b; 
 c=a+d; 
 e=c-1; 
 return e; 
} 

d=5 

b=7 

a=x+b 

c=a+d 

e=c-1 

return e 

{} 

{e} 

{c} 

{a,d} 

{d,x,b} 

{d,x} 

{x} 



d=5 

b=7 

a=x+b 

c=a+d 

e=c-1 

return e 

{} 

{e} 

{c} 

{a,d} 

{d,x,b} 

{d,x} 

a 

b 

c 

e 

d 

x 

We could do this with just 3 registers: 
 r1: {x} 
 r2: {a,c,e,b} 
 r3: {d} 



d=5 

b=7 

a=x+b 

c=a+d 

e=c-1 

return e 

{} 

{e} 

{c} 

{a,d} 

{d,x,b} 

{d,x} 

r1: {x}    r2: {a,c,e,b}  r3: {d} 
 
The code becomes: 
 
    move x to r1 
    r3=5 
    r2=7 
    r2=r1+r2 
    r2=r2+r3 
    r2=r2-1 
    return r2 

{x} 



So here's the methodology for register allocation: 
 

• For each function we build a flow graph. 
• We do a live variable analysis on the flow 

graph. 
• We build an interference graph for the 

variables, connecting any pair that are live at 
the same time. 

• We run a graph coloring algorithm on the flow 
graph. If we can color it with the number of 
registers we have available, we are golden. 
Otherwise we choose a subset of the variables 
to store in registers, the rest will be stored in  
memory. 



Here is a lemma that will help with our graph 
coloring: 
 
Lemma:  Let G be an interference graph.  Let P be a 
node in G with fewer than k neighbors.  Let G' be 
the subgraph of G formed by eliminating P and all of 
its edges.  If G' is k-colorable than so is G. 
Proof: Suppose G' is k-colorable. Let c1...cn be the 
neighbors of P in G, where n<k.  These neighbors 
use at most n colors in G'.  Let col be a color from G' 
not used by c1...cn  We can return node P to G with 
color col and give the rest of the nodes in G their 
colors in G'.  This provides a k-coloring of G. 



Now, to k-color an interference graph, we 
repeatedly apply this lemma.  Repeat the following 
until the graph has k or fewer nodes: 

• Pick a node t with fewer than k neighbors in 
the graph. Hopefully there is one. 

• Eliminate t and its edges from the graph. 
When the graph has k or fewer nodes it must have a 
k-coloring.  We can add the removed nodes back, in 
the reverse of the order in which they were 
removed (last removed node is added first) while 
preserving the k-coloring.  



For example, suppose we want a 3-coloring of the 
following graph: 

a 

b c 

d e 

f 

We can remove node a then f, because each has 
only 2 neighbors in the graph. 



This leaves us with 

b c 

d e 

Node b now has only 2 neighbors; it can be 
removed, leaving us with 3 nodes that can be 
colored with 3 colors: 

c 

d e 
R G 

B 



We add back b and its edges, with the only color it 
can be: 

b c 

d e 
R G 

B 
G 

b c 

d e 

f 

Then f: 

G B 

R G 

B 



Finally, we add back in a, the first node we removed: 

a 

b c 

d e 

f 

R G 

B 

G B 

R 



Of course, there is no guarantee that there will be a 
node in the graph with fewer than k neighbors.  In 
this case all we can do is to choose a node that we 
will not store in a register, remove this and its edges 
from the graph, and continue with the algorithm. 
Possible heuristics for choosing a node to remove 
are 

a) Nodes with many neighbors, to try to help the 
rest of the algorithm work 

b) Nodes with few uses, so there is less cost in 
not storoing them in registers 



We know the coloring problem is NP-hard and this is 
a polynomial-time algorithm for finding a k-coloring.  
There has to be a catch.  The catch is that it doesn't 
always work.  Here is a graph with a 3-coloring 
where every node has at least 3 edges: 

a 

b 

c d 

e G 

B G 

B 

R 



Here is a simple example.  Consider the following 
program which evaluates the polynomial f(x)=x2+3x-5 
over 10 values of x between 0.0 and 1.0:  

x = 0.0 
while (x<1.0) { 
 t1 = x*x 
 t2 = 3*x 
 t3 = t2-5 
 t4 = t1+t3 
 print(t4) 
 t5 = x+0.1 
 x = t5 
} 
 

{x} 

{x} 

{x,t1} 

{x,t1,t2} 

{x,t1,t3} 

{x,t4} 

{x} 

{x,t5} 

{x} 

x t1 

t2 

t3 t4 

t5 

If we have 3 registers 
available our algorithm 
will find a 3-coloring for 
this graph. 



Making the assignments: 
  x in R1 
 t1 in R2 
 all other variables in R3 results in the following 
code: 

R1 = 0.0 
while (R1<1.0) { 
 R2 = R1*R1 
 R3 = 3*R1 
 R3 = R3-5 
 R3 = R2+R3 
 print(R3) 
 R3 =R1+0.1 
 R1 = R3 
} 
 



One more example: 

b=2 
c=3 
f=5 
while (b<100) { 
 a=b+c 
 d=a 
 e=d+f 
 if (e < 10) 
  f=2*e 
 else 
  b=d+e 
 b=f+c 
} 
e=e-1 
  

{b,c,f} 

{b,c,f} 

{a,c,f} 

{c,d,f} 

{c,d,e,f} 

{b,c,e,f} 

 a 

 b 

 c 

 d 

 e 

 f 


