
Register Allocation

We want to store live variables in registers.

Why?

• Accessing a value from a register takes 1
instruction cycle

• Accessing a value from cache takes 3 to 5
cycles

• Accessing a value from RAM takes 20 to 100
cycles.

The OS determines what is in cache and what is in
RAM; the compiler determines what is in a register.

Here is the idea of register allocation: suppose the
runtime environment has R available registers and a
particular function uses D <= R variables, including
parameters, local variables and temporaries. We
can speed up the program by

a) assigning each variable to a register
b) at the start of the function load each variable

into its register
c) throughout the function use only the registers
d) at the end of the function "spill" all of the

registers back to the memory locations
associated with their variables.

This is sweet, only there are problems:
• All bets are off if the body of the function calls

another function (which might trash the
registers).

• If a variable is only referenced once, this
wastes time writing it into a register and then
writing it back to memory.

• There are usually more variables than registers.

• We can't help the problem with calling other
functions. Dataflow analysis is only applied to
the portions of code between calls. Some
heuristics are applied to determine whether any
such optimization is worthwhile.

• To avoid the problems with variables that are
used only once or twice, it is pretty easy to walk
down a flowgraph and count the number of
references. Note that anything used in a loop
can be assumed to be referenced many times.

• Register allocation algorithms assume these
problems have been handled and we have a flow
graph where we know the live variables at every
point on the graph.

The Register Allocation Problem is determining how
to assign variables to the available registers.

The most common approach to register allocation
uses a Graph Coloring algorithm due to G.J. Chaitin
(1981, plus lots of follow-up papers) Chaitin was a
researcher at IBM's TJ Watson research center.

For starters, notice that two variables can use the
same register if they are never live at the same time.
For example x might be live in statements s1-s7,
then y might be live in s10 -s15, then x might be live
again in s20-s28. Suppose they cohabit register R. If
x comes alive by being assigned the value of 23 in
statement s1, we just write that value into R. After
statement s7 we write R back to x's location in
memory. Similarly, y would come alive in s10
through assignment, which we would make into R

The graph coloring idea is to draw a graph where
the nodes are the variables and edges link every
pair of variables that are live at the same time. This
is called the Interference Graph. We color the
variables according to the register assignments. In
other words, if we can color the variables with {red,
green, blue} then we put all of the red variables into
one register, all of the green ones into another, and
so forth.

Of course, graph coloring is NP-Hard and we need
to do this quickly, but that is what makes life
interesting.

Example:
int f(x) {
 int a, b, c, d, e;
 d = 5;
 b = 7;
 a = x+b;
 c=a+d;
 e=c-1;
 return e;
}

d=5

b=7

a=x+b

c=a+d

e=c-1

return e

{}

{e}

{c}

{a,d}

{d,x,b}

{d,x}

{x}

d=5

b=7

a=x+b

c=a+d

e=c-1

return e

{}

{e}

{c}

{a,d}

{d,x,b}

{d,x}

a

b

c

e

d

x

We could do this with just 3 registers:
 r1: {x}
 r2: {a,c,e,b}
 r3: {d}

d=5

b=7

a=x+b

c=a+d

e=c-1

return e

{}

{e}

{c}

{a,d}

{d,x,b}

{d,x}

r1: {x} r2: {a,c,e,b} r3: {d}

The code becomes:

 move x to r1
 r3=5
 r2=7
 r2=r1+r2
 r2=r2+r3
 r2=r2-1
 return r2

{x}

So here's the methodology for register allocation:

• For each function we build a flow graph.
• We do a live variable analysis on the flow

graph.
• We build an interference graph for the

variables, connecting any pair that are live at
the same time.

• We run a graph coloring algorithm on the flow
graph. If we can color it with the number of
registers we have available, we are golden.
Otherwise we choose a subset of the variables
to store in registers, the rest will be stored in
memory.

Here is a lemma that will help with our graph
coloring:

Lemma: Let G be an interference graph. Let P be a
node in G with fewer than k neighbors. Let G' be
the subgraph of G formed by eliminating P and all of
its edges. If G' is k-colorable than so is G.
Proof: Suppose G' is k-colorable. Let c1...cn be the
neighbors of P in G, where n<k. These neighbors
use at most n colors in G'. Let col be a color from G'
not used by c1...cn We can return node P to G with
color col and give the rest of the nodes in G their
colors in G'. This provides a k-coloring of G.

Now, to k-color an interference graph, we
repeatedly apply this lemma. Repeat the following
until the graph has k or fewer nodes:

• Pick a node t with fewer than k neighbors in
the graph. Hopefully there is one.

• Eliminate t and its edges from the graph.
When the graph has k or fewer nodes it must have a
k-coloring. We can add the removed nodes back, in
the reverse of the order in which they were
removed (last removed node is added first) while
preserving the k-coloring.

For example, suppose we want a 3-coloring of the
following graph:

a

b c

d e

f

We can remove node a then f, because each has
only 2 neighbors in the graph.

This leaves us with

b c

d e

Node b now has only 2 neighbors; it can be
removed, leaving us with 3 nodes that can be
colored with 3 colors:

c

d e
R G

B

We add back b and its edges, with the only color it
can be:

b c

d e
R G

B
G

b c

d e

f

Then f:

G B

R G

B

Finally, we add back in a, the first node we removed:

a

b c

d e

f

R G

B

G B

R

Of course, there is no guarantee that there will be a
node in the graph with fewer than k neighbors. In
this case all we can do is to choose a node that we
will not store in a register, remove this and its edges
from the graph, and continue with the algorithm.
Possible heuristics for choosing a node to remove
are

a) Nodes with many neighbors, to try to help the
rest of the algorithm work

b) Nodes with few uses, so there is less cost in
not storoing them in registers

We know the coloring problem is NP-hard and this is
a polynomial-time algorithm for finding a k-coloring.
There has to be a catch. The catch is that it doesn't
always work. Here is a graph with a 3-coloring
where every node has at least 3 edges:

a

b

c d

e G

B G

B

R

Here is a simple example. Consider the following
program which evaluates the polynomial f(x)=x2+3x-5
over 10 values of x between 0.0 and 1.0:

x = 0.0
while (x<1.0) {
 t1 = x*x
 t2 = 3*x
 t3 = t2-5
 t4 = t1+t3
 print(t4)
 t5 = x+0.1
 x = t5
}

{x}

{x}

{x,t1}

{x,t1,t2}

{x,t1,t3}

{x,t4}

{x}

{x,t5}

{x}

x t1

t2

t3 t4

t5

If we have 3 registers
available our algorithm
will find a 3-coloring for
this graph.

Making the assignments:
 x in R1
 t1 in R2
 all other variables in R3 results in the following
code:

R1 = 0.0
while (R1<1.0) {
 R2 = R1*R1
 R3 = 3*R1
 R3 = R3-5
 R3 = R2+R3
 print(R3)
 R3 =R1+0.1
 R1 = R3
}

One more example:

b=2
c=3
f=5
while (b<100) {
 a=b+c
 d=a
 e=d+f
 if (e < 10)
 f=2*e
 else
 b=d+e
 b=f+c
}
e=e-1

{b,c,f}

{b,c,f}

{a,c,f}

{c,d,f}

{c,d,e,f}

{b,c,e,f}

 a

 b

 c

 d

 e

 f

